Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Respir Crit Care Med ; 204(9): 1024-1034, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1495777

ABSTRACT

Rationale: ACE2 (angiotensin-converting enzyme 2), the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is expressed in type 2 alveolar epithelial cells (AT2) that may play key roles in postinjury repair. An imbalance between ACE2 and ACE has also been hypothesized to contribute to lung injury. Objectives: To characterize the expression and distribution of ACE2 and ACE and to compare AT2 with endothelial cell expression in coronavirus disease (COVID-19)-related or -unrelated acute respiratory distress syndrome (ARDS) and controls. Methods: Lung tissue stainings (using multiplex immunofluorescence) and serum concentrations of ACEs were determined retrospectively in two different cohorts of patients. AT2 and endothelial cells were stained in lung tissue for ProSPC (pro-surfactant protein C) and CD31, respectively. Measurements and Main Results: Pulmonary ACE2 expression was increased in patients with COVID-19-related and -unrelated ARDS (0.06% of tissue area and 0.12% vs. 0.006% for control subjects; P = 0.013 and P < 0.0001, respectively). ACE2 was upregulated in endothelial cells (0.32% and 0.53% vs. 0.01%; P = 0.009 and P < 0.0001) but not in AT2 cells (0.13% and 0.08% vs. 0.03%; P = 0.94 and P = 0.44). Pulmonary expression of ACE was decreased in both COVID-19-related and -unrelated ARDS (P = 0.057 and P = 0.032). Similar increases in ACE2 and decreases in ACE were observed in sera of COVID-19 (P = 0.0054 and P < 0.0001) and non-COVID-19 ARDS (P < 0.0001 and P = 0.016). In addition, AT2 cells were decreased in patients with COVID-19-related ARDS compared with COVID-19-unrelated ARDS (1.395% vs. 2.94%, P = 0.0033). Conclusions: ACE2 is upregulated in lung tissue and serum of both COVID-19-related and -unrelated ARDS, whereas a loss of AT2 cells is selectively observed in COVID-19-related ARDS.


Subject(s)
Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Peptidyl-Dipeptidase A/metabolism , Respiratory Distress Syndrome/metabolism , Adult , Aged , Biomarkers/metabolism , COVID-19/diagnosis , COVID-19/physiopathology , Case-Control Studies , Female , Humans , Immunohistochemistry , Logistic Models , Male , Middle Aged , Proportional Hazards Models , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Retrospective Studies , Severity of Illness Index , Up-Regulation
2.
Crit Care ; 25(1): 212, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1269885

ABSTRACT

BACKGROUND: The severity of coronavirus disease 2019 (COVID-19) is highly variable between individuals, ranging from asymptomatic infection to critical disease with acute respiratory distress syndrome requiring mechanical ventilation. Such variability stresses the need for novel biomarkers associated with disease outcome. As SARS-CoV-2 infection causes a kidney proximal tubule dysfunction with urinary loss of uric acid, we hypothesized that low serum levels of uric acid (hypouricemia) may be associated with severity and outcome of COVID-19. METHODS: In a retrospective study using two independent cohorts, we investigated and validated the prevalence, kinetics and clinical correlates of hypouricemia among patients hospitalized with COVID-19 to a large academic hospital in Brussels, Belgium. Survival analyses using Cox regression and a competing risk approach assessed the time to mechanical ventilation and/or death. Confocal microscopy assessed the expression of urate transporter URAT1 in kidney proximal tubule cells from patients who died from COVID-19. RESULTS: The discovery and validation cohorts included 192 and 325 patients hospitalized with COVID-19, respectively. Out of the 517 patients, 274 (53%) had severe and 92 (18%) critical COVID-19. In both cohorts, the prevalence of hypouricemia increased from 6% upon admission to 20% within the first days of hospitalization for COVID-19, contrasting with a very rare occurrence (< 1%) before hospitalization for COVID-19. During a median (interquartile range) follow-up of 148 days (50-168), 61 (12%) patients required mechanical ventilation and 93 (18%) died. In both cohorts considered separately and in pooled analyses, low serum levels of uric acid were strongly associated with disease severity (linear trend, P < 0.001) and with progression to death and respiratory failure requiring mechanical ventilation in Cox (adjusted hazard ratio 5.3, 95% confidence interval 3.6-7.8, P < 0.001) or competing risks (adjusted hazard ratio 20.8, 95% confidence interval 10.4-41.4, P < 0.001) models. At the structural level, kidneys from patients with COVID-19 showed a major reduction in urate transporter URAT1 expression in the brush border of proximal tubules. CONCLUSIONS: Among patients with COVID-19 requiring hospitalization, low serum levels of uric acid are common and associate with disease severity and with progression to respiratory failure requiring invasive mechanical ventilation.


Subject(s)
COVID-19/metabolism , COVID-19/physiopathology , Kidney Tubules, Proximal/metabolism , Severity of Illness Index , Uric Acid/blood , Aged , Belgium , COVID-19/complications , Cohort Studies , Critical Illness/epidemiology , Humans , Male , Middle Aged , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Outcome Assessment, Health Care , Retrospective Studies
3.
Pathobiology ; 88(1): 88-94, 2021.
Article in English | MEDLINE | ID: covidwho-894931

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) infection, caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), involves several organs through participation of angiotensin-conversion enzyme 2 (ACE2) receptors. The presence of ACE2 receptors in the liver renders this organ a potential target for the novel coronavirus. METHODS: We performed 14 complete autopsies of patients infected with SARS-CoV-2. In each case we stained liver tissue sections with haematoxylin/eosin, Masson blue trichrome stain, periodic acid-Schiff (PAS), Perls, and performed cytokeratin-7 (CK7) immunochemistry. RESULTS: Macroscopically, livers were pale and yellowish in 8 of 14 (57%) patients, and had a nutmeg appearance in the other 6 cases (42%). Histologically, centrolobular necrosis was observed in 12 cases (86%), and was associated with discreet to moderate lobular or portal inflammation. Steatosis was seen in 8 cases (57%), but fibrosis was rare. Cholestasis and discrete bile duct proliferation was observed in 5 cases (36%). DISCUSSION/CONCLUSION: The main histological changes can be explained by the hypoxic status as a result of severe hypoxemic pneumonia leading to death. Drug toxicity may also play a role in certain cases. Other histological changes may be explained by previous hepatic conditions or underlying hepatic diseases. We concluded that COVID-19 infection was not associated with a specific histopathological pattern of the liver.


Subject(s)
COVID-19/pathology , COVID-19/virology , Liver/virology , Pneumonia/virology , SARS-CoV-2/pathogenicity , Aged , Aged, 80 and over , Autopsy/methods , Female , Humans , Liver/pathology , Male , Middle Aged , Pneumonia/complications
4.
Kidney Int ; 98(5): 1296-1307, 2020 11.
Article in English | MEDLINE | ID: covidwho-704001

ABSTRACT

Coronavirus disease 2019 (COVID-19) is commonly associated with kidney damage, and the angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 is highly expressed in the proximal tubule cells. Whether patients with COVID-19 present specific manifestations of proximal tubule dysfunction remains unknown. To test this, we examined a cohort of 49 patients requiring hospitalization in a large academic hospital in Brussels, Belgium. There was evidence of proximal tubule dysfunction in a subset of patients with COVID-19, as attested by low-molecular-weight proteinuria (70-80%), neutral aminoaciduria (46%), and defective handling of uric acid (46%) or phosphate (19%). None of the patients had normoglycemic glucosuria. Proximal tubule dysfunction was independent of pre-existing comorbidities, glomerular proteinuria, nephrotoxic medications or viral load. At the structural level, kidneys from patients with COVID-19 showed prominent tubular injury, including in the initial part of the proximal tubule, with brush border loss, acute tubular necrosis, intraluminal debris, and a marked decrease in the expression of megalin in the brush border. Transmission electron microscopy identified particles resembling coronaviruses in vacuoles or cisternae of the endoplasmic reticulum in proximal tubule cells. Among features of proximal tubule dysfunction, hypouricemia with inappropriate uricosuria was independently associated with disease severity and with a significant increase in the risk of respiratory failure requiring invasive mechanical ventilation using Cox (adjusted hazard ratio 6.2, 95% CI 1.9-20.1) or competing risks (adjusted sub-distribution hazard ratio 12.1, 95% CI 2.7-55.4) survival models. Thus, our data establish that SARS-CoV-2 causes specific manifestations of proximal tubule dysfunction and provide novel insights into COVID-19 severity and outcome.


Subject(s)
Coronavirus Infections/physiopathology , Kidney Tubules, Proximal/physiopathology , Pneumonia, Viral/physiopathology , Aged , Aged, 80 and over , Belgium/epidemiology , Betacoronavirus , COVID-19 , Case-Control Studies , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Humans , Kidney Tubules, Proximal/ultrastructure , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL